top of page

[37] Rana, D., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS) - Splashback radius of X-ray galaxy clusters using galaxies from HSC survey”, Monthly Notices of the Royal Astronomical Society, vol. 522, no. 3, pp. 4181–4195, 2023. doi:10.1093/mnras/stad1239.


[36] Edler, H. W, et al., “ViCTORIA project: The LOFAR HBA Virgo Cluster Survey”, arXiv e-prints, 2023. doi:10.48550/arXiv.2306.04513.
 

[35] Han, J. J., et al., “NANCY: Next-generation All-sky Near-infrared Community surveY”, arXiv e-prints, 2023.

 

[34] Hoang, D. N., “A search for inter-cluster filaments with LOFAR and eROSITA”, arXiv e-prints, 2023. doi:10.48550/arXiv.2306.03904.
 

[33] Koribalski, B. S., et al., “MeerKAT discovery of a double radio relic and odd radio circle”, arXiv e-prints, 2023. doi:10.48550/arXiv.2304.11784.
 

[32] Tubín-Arenas, D., et al., “Discovery of the lensed quasar eRASS1 J050129.5−073309 with SRG/eROSITA and Gaia”, Astronomy and Astrophysics, vol. 672, 2023. doi:10.1051/0004-6361/202346316.
 

[31] Krippendorf, S., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS): A Machine Learning Approach to Infer Galaxy Cluster Masses from eROSITA X-ray Images”, arXiv e-prints, 2023. doi:10.48550/arXiv.2305.00016.
 

[30] Seppi, R., et al., “Offset between X-ray and optical centers in clusters of galaxies: Connecting eROSITA data with simulations”, Astronomy and Astrophysics, vol. 671, 2023. doi:10.1051/0004-6361/202245138.
 

[29] Liu, A., et al., “X-ray analysis of JWST's first galaxy cluster lens SMACS J0723.3−7327”, Astronomy and Astrophysics, vol. 670, 2023. doi:10.1051/0004-6361/202245118.


[28] Scheck, D., Sanders, J. S., Biffi, V., Dolag, K., Bulbul, E., and Liu, A., “Hydrostatic mass profiles of galaxy clusters in the eROSITA survey”, Astronomy and Astrophysics, vol. 670, 2023. doi:10.1051/0004-6361/202244582.
 

[27] Popesso, P., et al., “The X-ray invisible Universe. A look into the halos undetected by eROSITA”, arXiv e-prints, 2023. doi:10.48550/arXiv.2302.08405.
 

[26] Ota, N., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). X-ray properties of Subaru's optically selected clusters”, Astronomy and Astrophysics, vol. 669, 2023. doi:10.1051/0004-6361/202244260.
 

[25] Almeida, A., et al., “The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V”, arXiv e-prints, 2023. doi:10.48550/arXiv.2301.07688.
 

[24] ZuHone, J., et al., “Effects of Multiphase Gas and Projection on X-ray Observables in Simulated Galaxy Clusters as Seen by eROSITA”, arXiv e-prints, 2022. doi:10.48550/arXiv.2212.11028.
 

[23] Comparat, J., et al., “The eROSITA Final Equatorial Depth Survey (eFEDS). X-ray emission around star-forming and quiescent galaxies at 0.05 < z < 0.3”, Astronomy and Astrophysics, vol. 666, 2022. doi:10.1051/0004-6361/202243101.
 

[22] Seppi, R., et al., “Detecting clusters of galaxies and active galactic nuclei in an eROSITA all-sky survey digital twin”, Astronomy and Astrophysics, vol. 665, 2022. doi:10.1051/0004-6361/202243824.
 

[21] Whelan, B., et al., “X-ray studies of the Abell 3158 galaxy cluster with eROSITA”, Astronomy and Astrophysics, vol. 663, 2022. doi:10.1051/0004-6361/202141621.
 

[20] Bahar, Y. E., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). X-ray properties and scaling relations of galaxy clusters and groups”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202142462.
 

[19] Saeedi, S., et al., “eROSITA study of the globular cluster 47 Tucanae”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141612.

​

[18] Ramos-Ceja, M. E., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). A complete census of X-ray properties of Subaru Hyper Suprime-Cam weak lensing shear-selected clusters in the eFEDS footprint”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202142214.
 

[17] Bulbul, E.,et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). Galaxy clusters and groups in disguise”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202142460.
 

[16] Brunner, H., et al., “The eROSITA Final Equatorial Depth Survey (eFEDS). X-ray catalogue”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141266.
 

[15] Liu, A.,et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). Catalog of galaxy clusters and groups”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141120.
 

[14] Ghirardini, V., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). Characterization of morphological properties of galaxy groups and clusters”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141639.
 

[13] Liu, T., et al., “Establishing the X-ray source detection strategy for eROSITA with simulations”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141178.
 

[12] Chiu, I.-N., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). X-ray observable-to-mass-and-redshift relations of galaxy clusters and groups with weak-lensing mass calibration from the Hyper Suprime-Cam Subaru Strategic Program survey”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141755.
 

[11] Veronica, A., et al., “The eROSITA view of the Abell 3391/95 field: The Northern Clump. The largest infalling structure in the longest known gas filament observed with eROSITA, XMM-Newton, and Chandra”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141415.
 

[10] Sanders, J. S., et al., “Studying the merging cluster Abell 3266 with eROSITA”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141501.
 

[9] Biffi, V., et al., “The eROSITA view of the Abell 3391/95 field: Case study from the Magneticum cosmological simulation”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141107.
 

[8] Klein, M., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). Optical confirmation, redshifts, and properties of the cluster and group catalog”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141123.
 

[7] Iljenkarevic, J., et al., “eROSITA spectro-imaging analysis of the Abell 3408 galaxy cluster”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141411.
 

[6] Pasini, T., et al., “The eROSITA Final Equatorial-Depth Survey (eFEDS). LOFAR view of brightest cluster galaxies and AGN feedback”, Astronomy and Astrophysics, vol. 661, 2022. doi:10.1051/0004-6361/202141211.
 

[5] Seppi, R., et al., “The mass function dependence on the dynamical state of dark matter haloes”, Astronomy and Astrophysics, vol. 652, 2021. doi:10.1051/0004-6361/202039123.
 

[4] Brüggen, M., et al., “Radio observations of the merging galaxy cluster system Abell 3391-Abell 3395”, Astronomy and Astrophysics, vol. 647, 2021. doi:10.1051/0004-6361/202039533.
 

[3] Predehl, P., et al., “The eROSITA X-ray telescope on SRG”, Astronomy and Astrophysics, vol. 647, 2021. doi:10.1051/0004-6361/202039313.
 

[2] Ghirardini, V., et al., “Discovery of a supercluster in the eROSITA Final Equatorial Depth Survey: X-ray properties, radio halo, and double relics”, Astronomy and Astrophysics, vol. 647, 2021. doi:10.1051/0004-6361/202039554.
 

[1] Reiprich, T. H., et al., “The Abell 3391/95 galaxy cluster system. A 15 Mpc intergalactic medium emission filament, a warm gas bridge, infalling matter clumps, and (re-) accelerated plasma discovered by combining SRG/eROSITA data with ASKAP/EMU and DECam data”, Astronomy and Astrophysics, vol. 647, 2021. doi:10.1051/0004-6361/202039590.
 

Publications

bottom of page